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1. INTRODUCTION

Let X be a non-empty closed convex set in a separated topological vector

space. It is easily seen that for every x € X, the intersection
Cx= N MX—-x)
A>0

is a closed convex cone independent of the choice of x in X. Following Choquet
[21, [3], Cx is called the asymptotic cone of X. For every x € X, x + Cy is the
union of all closed halflines beginning at x and contained in X.

The following result has been recently obtained by Dieudonné [4]:

Let X, Y be two non-empty closed convex sets in a separated topological vector
space E. If Cx N Cy = {0} and if at least one of X, Y is locally compact, then
X — Yis closed in E.

In the present paper, we shall study duality of linear relations by using the
notion of asymptotic cones. Section 2 is concerned with existence theorems for
linear relations involving closed, locally compact convex sets. Section 3 deals
with dual extremal problems. All results in this paper are based on Dieudonné’s
theorem stated above. They improve and sharpen some of the results obtained
previously in ([5], Theorems 4-7) by a different approach.

All vector spaces considered here are implicitly assumed to be real vector
spaces. By a convex cone in a vector space E, we shall understand a convex
cone with its vertex at the origin 0 of E. For a topological vector space E, the
dual space of F (i.e., the vector space of all continuous linear forms on E) is
denoted by E’. For aset X < E, X% and X°° denote the polar and bipolar of X
[1], [6]. Thus,

X°={feE"f(x)<1forall x € X},
XO={xecE:f(x)<1forall fe X°.

* Work supported in part by the National Science Foundation Grant GP-8394.
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The transpose of a continuous linear map 4 is denoted by *4. The empty set is
denoted by .

2. EXISTENCE THEOREMS

We first state the following result:

THeoREM 1. Let E, F be two separated, locally convex topolegical vector spaces.
Let A: E — F be a continuous linear map such that the image A(E) is closed in F.
Let K be a closed, locally compact, convex set in F such that A(EY Y K# @
and A(E) N Cg = {0}. Then for any y, € F, there exists an x € E satisfving

Yo—Ax € K, {1
if and only if
geK®and'Ag =0 imply g(y,) < 1. (2
Remark 1. The hypothesis A(E) N Ck = {0} in the above theorem is essential.
This can be seen from the following simple example. In the Euclidean 3-space
R, let K be the closed convex cone formed by all (£,,£,,£5) € R® such that
£,>0,6,>0,£,6, > €2 Let 4: R? — R*bedefined by 4(§,,£2,£5) =(0,£,,0),
and let y,=(0,0,1). We regard R?® as its own dual space by identifying
g=(n1,7m273) €R® with the linear form g(x)=mn,é +m& +9:8; for
x=(£,,£,,&;). Then KO is the set of all (n;,7,,7:) € R* such that %, <0,
72 <0 and %32 <4n,7,. Condition (2) is satisfied, but no x € E satisfies (1.
Here Theorem 1 fails to apply, because A(R*) N Cg # {0}
Theorem 1 is a special case (i.e., the case fo = 0, « = 0) of the following more
general result.

THEOREM 2. Let E, F be two separated, locaily convex fopological vector spaces.
Let A: E — F be a continuous linear map such that A(E) is closedin F. Let Kbe u
closed, locally compact, convex set in F and f, € *A(F'). Suppose thai the
Jollowing conditions (3), (4) are fulfilled:

There is an xy € E such that Ax, € K and fi{xy) > 0. {33
x € E, Ax € Cg and f4(x) = 0 imply Ax =0. {4
Then for any y, € F and any real number o, there exists an x € E satisfying
yo—AxeK, fix)<a, {3)
if and only if
g €K% B>0and Ag — Bfo=0imply g(y,) — fa < 1. (&

Proof. Denote by R, Rt, R, respectively, the real line, the set of all non-
negative real numbers, and the set of all non-positive real numbers. Cousider
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the topological vector space F X R with the product topology. Let £ denote
the vector subspace of Fx R formed by all (4x, fy(x)) with x € E. Since
Jo € YA(F"), there is a gy € F’ such that f; = 'Ag,. Thus, £ = {(4x,ge(4x)):
x € E}is the kernel of the continuous linear form (¥, %) — 1 — g¢(3) defined on
A(F) x R, s0 Z is closed in A(E) x R. As A(FE) is closed in F, it follows that
Z is a closed vector subspace of F x R.

Let 4" = K x R*. Since R* is a cone, it is easy to see that the asymptotic cone
Cyr of A is given by Cpr =Cx x RT. If x € E and (4x,g(4x)) € Cypr =
Ck X RY, then f(x) = go(4x) > 0, so by hypothesis (4), we must have Ax = 0.
Thus Cpr N Coe=Cyuy N.F contains only the origin (0,0) of Fx R. By
Dieudonné’sresult stated in Section 1, 4 + Zisclosedin F x R. Furthermore,
we have by (3), (dx,, fo(xp) € X N L, so A + . contains the origin (0,0)
of Fx R. Therefore, by the bipolar theorem ([6], p. 248), (# + .F)%° =
A+ L.

Now the existence of an x € E satisfying (5) is equivalent to the relation
(o, @) € A + 2, which is the same as (yg,«) € (A + £)°0. Hence there
exists an x € E satisfying (5), if and only if (g,—B) € (¢~ + £)° implies g(»o) —
B < 1. This condition is equivalent to (6). Indeed, because . is a vector
subspace of F x R, we have (g,—f) € (A + £)°if and only if (g,—B) (4x, f3(x))
=0 for all x € £ and (g,—B) € #° = K° x R~. This completes the proof of
Theorem 2.

THEOREM 3. Let E, F be two separated locally convex topological vector spaces,
and A:E — F a continuous linear map. Let P, Q be closed, locally compact,
convex sets in E, F, respectively, such that at least one of P, Q is a cone, and
0 € A(P) + Q. Suppose that the following condition is fulfilled:

x € Cpand Ax € —Cy imply x =0. (7
Then, for any y, € F, there exists an x € E satisfying
xeP, y,—AxeQ, @®
if and only if
g € Q°and'Ag € P imply g(y,) < 1. )

Proof. Define the continuous linear map =7 : E — E X Fby &/(x) = (—x, Ax)
for x € E. &Z(E) is closed in E x F, because it is the kernel of the continuous
linear map (x,y) - Ax +y from E x F into F. Consider the closed, locally
compact, convex set Z=Px Q in ExF. As 0 4(P)+ Q, we have
H(EYN P+ @. It is easy to see that the asymptotic cone Cyp of =P X Q
is given by Cg=Cp x C,. By hypothesis (7), (—x,4x) € Cs=Cp x C,
implies x = 0. Hence &/(E) N Cp contains only the origin (0,0) of E x F. By
Theorem 1, there exists an x € E satisfying

0,y0) ~H(x) e Z, (10)
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if and only if

(f,8) € #° and '/(f,2) = 0 imply (£,8)(0,y5) < 1. (11

Cleatrly (10) is the same as (8). Since one of P, @ is a cone, the polar 2 of Z in
(ExFY=FE xF' is given by &°=P°®x Q° Condition (11} states that
feP% ge Q%andtdg —f=0 imply g(yo) < 1, so it is the same as condirion
{9). Theorem 3 is thus proved.

Remark 2. Theorem 3 will cease to be valid if hypothesis (7) is dropped.
This can be seen from the example discussed in Remark 1, if the set X considered
there is taken as Q, and if R is taken as P.

3. DuAL EXTREMAL PROBLEMS

Using Theorem 2, we can prove the following result.

THEOREM 4. Let E, F be two separated, locally convex, topological vector
spaces. Let A:E — F be a continuous linear map such that A(E) is closed in F.
Let K be a closed, locally compact, convex set in F, and f, € *A(F') such that
conditions (3), (4) are fulfilled. Let yy € A(E) + K. Then:

(a) fo(x) is bounded from below on the set {x € E:y, — Ax € K}, if and only
if there exist g € F' and a real number B satisfying

geK®,  B>0, ‘dg=8f. (17

(b)If there exist g € F' and a real number B satisfying (12), then the
minimum of fo(x) over the set {x € E:y, — Ax € K} is attained, and is egual io
the supremum of [g(yo) — 11/B, when (g,B) € F' x R varies under condition (12:

Min { /o(x):y, — Ax € K} = Sup {@?:g ek B>0,t4g =/5’f0}. (1%

roof. To prove the theorem, it suffices to verify the following statements
(i) and (D).
@ If no (g,B) € F' X R can satisfy (12), then fo(x) is not bounded from
below on the set {x € E:y, — Ax € K}.

Since yo € A(E) + K, we can find x; € F such that y, — 4Ax, € K. Then
g€ K% and '4g=0 imply g(yo) =g(yo—4x)<1. As no (g,f)eF xR
satisfies (12}, this implication means that condition (§) is verified for every real
number «. By Theorem 2, for every o € R, there exists an x € E satisfying (5).
Hence /() isnot bounded from below on {x € E:yy — Ax € K}. This proves (i),

(i) If there exists (g,B) € F' X R satisfying (12), then the minimum of
Jo(x) over the set {x € E:yy — Ax € K} is attained, and (13) holds.

Let M denote the set of those real numbers « for which (5) has a sclution

x € E. By Theorem 2, M coincides with the set of those o € R for whic
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condition (6) is satisfied. Since y, € A(E) + K, we can choose x; € E such that
Yo—Ax; € K. Then geK° and *Ag=0 imply g(yo)=g(yo— A4x)) < 1.
Consequently, under the assumption y, € A(E) - K, condition (6) is equivalent
to the following one:

8(r) -1 ‘}g' 1 (14)

Hence M is the set of all « € R having property (14). It follows that Min, ., o
exists and is equal to the supremum of [g(y,) — 1]/B when (g,8) € F’ x R
varies under condition (12). But according to the definition of M, Min, . p  is
precisely the minimum of fy(x) over the set {x € £:y, — Ax € K}. This proves

(i)

g€ K’ B>0anddg=pf, imply « >

In case the convex set K is a cone, Theorem 4 has the following simpler
formulation:

THEOREM 5. Let E, F be two separated, locally convex, topological vector
spaces. Let A:E — F be a continuous linear map such that A(E) is closed in F.
Let K be a closed, locally compact, convex cone in F, and fy € *A(F") such that
the following condition is fulfilled:

x € E, Ax € K and fo(x) = 0 imply Ax =0. (15

Let yo € A(E) +K. Then:

(a) fo(x) is bounded from below on the set {x € E:y, — Ax € K}, if and only
if fy € *A(KO).

(b) If fo €tA(K®), then the minimum of fo(x) over the set {x € E:
Yo — Ax € K} is attained, and

Min {fo(x):yo — Ax € K} = Sup {g(yo):g € K°, "Ag = fo}. (16)

Proof. Since K is a cone, condition (3) is automatically satisfied, and condi-
tion (4) is the same as (15). K is, like K, a cone, so the existence of (g,5) €
F’ x R satisfying (12) is equivalent to the relation f; € *4(K°). Let

g = Sup {h(yo)h € KO, t4h =fl0},
r=Sup{£28Lig K7, B> 0, 'Ug — ).

To derive Theorem 5 from Theorem 4, it suffices to verify that if f € ‘4(K°),
then o= 7.

Assume f; € *A(K®). By Theorem 4, the supremum - is finite. For any € > 0,
we can find (g,B) € F' x R satisfying (12) such that [g(y) —11/B>7—«.



DUALITY OF LINEAR RELATIONS 157

If we take h=g/B, then heK® ‘Ah=f; and o= h(yg)=g(yg)/B>7— =.
This shows that ¢ > 7.

On the other hand, if & € K° and *Ah = f;, then for any 8> 0, g = Bh and 3
will satisfy (12), so A(yo) = [g(yo))/B < 7 + (1/B). As B can be arbitrarily large,
we must have A(y;) <t for every & € K° satisfying '4h=f,. This proves
o < 7 and therefore, ¢ = 7.

THEOREM 6. Let E, F be two separated, locally convex, topological vector
spaces, and A:E — F a continuous linear map. Let P, O be closed, locally
compact, convex sets in E, F, respectively, such that at least one of them is a cone.
Suppose that f, € E’ satisfies the following two conditions:

There exists an xq € —P such that Axy € Q and fy(xg) > 0; {
x € —Cp, Ax € Cy and fo(x) > 0 imply x = 0. 8

Let yy € A(P)+ Q. Then:

() jo(x) is bounded from below on the set {x e E:x € P,yy— Ax e O},
if and only if there exist g € F' and B € R satisfying

ge 0% B>0, tAg — Bfy € PO {19

(b) If there exists (g,B) € F' x R satisfying (19), then the minimum of
Jo(x) over the set {x € E:x € P,yy — Ax € Q} is attained, and is equal to the
supremum of [g(vo) — 11/B, when (g,B) € F' x R varies under condition (19):

Min{fy(x):x e P,y,— Ax € Q} {20)

) }
:Sup{g%l:gego,ﬁ>ﬂ,%g—,8ﬂ) ei’ﬁ}f}‘

Proof. Consider the topological product vector space E x F, and the
continuous linear map &7 : E — E x F defined by &/(x} = (—x, 4x) for x € .
S/(E) is closed in E X F, since it is the kernel of the continuous linear map
(x,y) - Ax + y from E x F into F. The transpose ‘&7 :E’' x F' — E' of o/ is
given by 'wf(h,g)="Ag—h for (h,g) e E' x F'. Clearly, ‘A(E'x Fy=E",
and, therefore, f € '/(E’ x F'). Let # =P x @, which is a closed, locally
compact, convex set in E x F. Condition (17) means that there is an x; € E
satisfying o7 (x,) € & and fy(x,) > 0. Because at least one of P, (0 is a cone, we
have Cg = Cp x Cy. Thus condition (18) means that x € E, 2#(x) € Cp and
Jo(*) =0 imply x=0. Since y, € A(P)+ Q, we have (0,3, € F(E)} + 2,
Again, because one of P, 0 is a cone, we have 2% = P% x 09,

In order to derive the present theorem from Thecrem 4, it suffices to make
the following observation. First, the relation {0,y,) — #7(x) € & is equivalent
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to x € P and y, — Ax € Q. Secondly, the existence of (h,g) e E’ x F’ and
B € R satisfying

(h,g) € P°, B>0 and ‘Z(h,g)=Brf @1

is equivalent to the existence of (g,B) € F' X R satisfying (19). Finally,
the supremum on the right side of (20) is precisely the supremum of
[(h,2)(0,y,) — 11/B, when (h,g) € E’ x F' and B € R vary under condition (21).

Ifboth P, Q are cones, then Theorem 6 has the following simpler formulation.

THEOREM 7. Let E, F be two separated, locally convex, topological vector
spaces, and A:E — F a continuous linear map. Let P, Q be closed, locally
compuact, convex cones in E, F, respectively. Let fy € E' be such that the following
condition is fulfilled:

x € —P, Ax € Q and f(x) = 0 imply x =0. (22)

Let yo € A(P) + Q. Then:
(a) fo(x) is bounded from below on the set, {(x e E:x e Py, — Ax € 0}, if

and only if there exists g € F’ satisfying
geQ’ ‘dg—foeP’ (23)
(b) If there exists a g € F' satisfying (23), then the minimum of fy(x) over

the set {x € E:x € P,y, — Ax € O} is attained, and is equal to the supremum of
g(y0), when g varies under condition (23):

Min{fy(x):x € P,y — Ax € O}
=Sup{g(10):g € Q% ‘g —fo € P%. (29)

Proof. Since P, Q are closed convex cones, condition (17) is automatically
verified, while condition (18) is the same as (22). Because P?, Q° are also cones,
the existence of (g,8) € F' x R satisfying (19) is equivalent to the existence of
g € F' satisfying (23). Let

o=Sup{h(yy):he Q%A —f, € P9,
T=Sup{g(i(;;_—1:ge 0% B=>0,'4g—Bf, EPO}.

To derive Theorem 7 from Theorem 6, it suffices to verify that, if there exists
g € F' satisfying (23), then ¢ = 7. This is verified by an argument similar to
that in the proof of Theorem 5.

Remark 3. In the Euclidean 3-space R3, let P be the closed convex cone
formed by all (§,,£,,&;) € R® satisfying £, >0, £,>0 and £, &, > &2 Let



DUALITY OF LINEAR RELATIONS 156

Q =—P. Consider the linear map A:R3 - R® defined by A({,65,6:) =
(0,&,,£1). We regard R’ asits own dual space by identifving g = (ny,m,,793) € R®
with the linear form g(x) =, &; +n2é2 + 03 & for x=(£,,6,,&,). Then P°
is the set of all (4;,7,,73) € R® such that n; <0, 4, <0 and n3* <4n; 79,
We have Q°=—P% and ‘A(n;,12,%3) = (73,0,72). Let 3,=(0,—1,0) and
Jo=10,0,1), ie,, the linear form fy(§1,€2,65)=&;. Then x=(£,6,&5)
satisfies x e P and y,— Ax € 0O, if and only if £, =£,=0 and & > 0. For
every such x, we have fo(x) =0. g = (1,72, 73} satisfies (23}, if and only if
72 =1, 13 <0 and 73;* <4n;. For every such g, we have g(y) =—1. Thus,
equality {24) is not verified. Here, Theorem 7 fails to apply, because condition
(22) is not fulfilled.
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